Increasing Spatial Fidelity and SNR of 4D-STEM Using Multi-Frame Data Fusion

نویسندگان

چکیده

4D-STEM, in which the 2D diffraction plane is captured for each scan position scanning transmission electron microscope (STEM) using a pixelated detector, complementing and increasingly replacing existing imaging approaches. However, at present speed of those detectors, although having drastically improved recent years, still 100 to 1,000 times slower than current PMT technology operators are used to. Regrettably, this means environmental scanning-distortion often limits overall performance recorded 4D data. Here we an extension STEM distortion correction techniques treatment 4D-data series. Although applicable general, use ptychography electric-field mapping as model cases demonstrate improvement spatial-fidelity, signal-to-noise ratio (SNR), phase-precision spatial-resolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.

Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity ...

متن کامل

Spatial data fusion in Spatial Data Infrastructures using Linked Data

The synthesis of spatial data from the various sources available on the Web is a major challenge for current applications based on Web-based information retrieval and spatial decision-making. This paper addresses spatial data fusion, with particular emphasis on its application in Spatial Data Infrastructures (SDIs). Possibilities for the integration of SDI and Semantic Web developments in the c...

متن کامل

4D Multi-atlas Label Fusion Using Longitudinal Images

Longitudinal reproducibility is an essential concern in automated medical image segmentation, yet has proven to be an elusive objective as manual brain structure tracings have shown more than 10% variability. To improve reproducibility, longitudinal segmentation (4D) approaches have been investigated to reconcile temporal variations with traditional 3D approaches. In the past decade, multi-atla...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Microscopy and Microanalysis

سال: 2022

ISSN: ['1435-8115', '1431-9276']

DOI: https://doi.org/10.1017/s1431927621012587